Abstract
In conventional reactive magnetron sputtering, target poisoning frequently leads to an instability that requires the reactive gas flow rate to be actively regulated to maintain a constant composition of the deposited layers. Here we demonstrate that the pulse length in high power impulse magnetron sputtering (HiPIMS) is important for determining the surface conditions on the target that lead to poisoning. By increasing the pulse length, a smooth transition can be achieved from a poisoned target condition (short pulses) to a quasi-metallic target condition (long pulses). Appropriate selection of pulse length eliminates the need for active regulation, enabling stable reactive magnetron sputter deposition of stoichiometric amorphous hafnium oxide (HfO2) from a Hf target. A model is presented for the reactive HiPIMS process in which the target operates in a partially poisoned mode with a distribution of oxide on its surface that depends on the pulse length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.