Abstract

Pulmonary arterial hypertension (PAH) is associated with refractory vasoconstriction and impaired NO-mediated vasodilatation of the pulmonary vasculature. Vascular tone is regulated by light chain (LC) phosphorylation of both nonmuscle (NM) and smooth muscle (SM) myosins, which are determined by the activities of MLC kinase and MLC phosphatase. Further, NO mediated vasodilatation requires the expression of a leucine zipper positive (LZ+) isoform of the myosin targeting subunit (MYPT1) of MLC phosphatase. The objective of this study was to define contractile protein expression in the pulmonary arterial vasculature and vascular reactivity in PAH. In severe PAH, compared to controls, relative LZ+MYPT1 expression was decreased (100±14% vs. 60±6%, p<0.05, n=7–8), and NM myosin expression was increased (15±4% vs. 53±5% of total myosin, p<0.05, n=4–6). These changes in contractile protein expression should alter vascular reactivity; following activation with Ang II, force activation and relaxation were slowed, and sustained force was increased. Further, the sensitivity to ACh-mediated relaxation was reduced. These results demonstrate that changes in the pulmonary arterial SM contractile protein expression may participate in the molecular mechanism producing both the resting vasoconstriction and the decreased sensitivity to NO-mediated vasodilatation associated with PAH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.