Abstract

The post-translational modification of proteins by members of the Small Ubiquitin-like MOdifier (SUMO) family is beginning to emerge as a key regulator of neuronal function. SUMO conjugation modifies the interaction of target proteins with protein partners, and thereby alters their subcellular localization, activity and stability. Importantly, SUMOylation is readily reversible, allowing cells to respond rapidly to varying cellular demands. SUMO has already been implicated in the regulation of multiple neuronal signalling pathways, mitochondrial dynamics, spine formation and synaptogenesis, as well as the direct control of neuronal excitability via its modulation of cell surface receptors and ion channels. Here, we outline the basic mechanics of the SUMO pathway, review major recent advances in the field and discuss the far-reaching implications of neuronal SUMOylation in health and disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.