Abstract

Cytochrome P450 1A1 (CYP1A1) is induced by halogenated and polycyclic aromatic hydrocarbons following activation of the aryl hydrocarbon receptor (AhR). Protein kinase C (PKC) has been implicated in the regulation of this response. In tissue culture, induction of PKC activity with phorbol esters synergizes the actions of TCDD-induced CYP1A1, while PKC inhibitors block induction of CYP1A1 by TCDD. Here, the actions of specific PKC inhibitors on CYP1A1 induction were examined using a HepG2 human cell line (TV101L) that carries a stably integrated firefly luciferase gene under control of the human CYP1A1 promoter (-1612/+293). TV101 cells were treated with TCDD and either the kinase inhibitor staurosporine or one of the PKC inhibitors GF109203X, Gö6983, or Gö6976. Aryl hydrocarbon receptor-dependent activation of CYP1A1-luciferase and cellular PKC activity were measured. TCDD treatment induced CYP1A1-luciferase activity in an AhR-dependent manner, as determined by binding of nuclear AhR to xenobiotic response elements (XREs). Dose-dependent inhibition of PKC activity by staurosporine was concordant with inhibition of TCDD-induced CYP1A1-luciferase activity. However, the PKC inhibitors GF109203X, Gö6983, and Gö6976 blocked PKC activity at concentrations independent of those necessary to block TCDD induction of CYP1A1-luciferase activity. For all inhibitors, reduction in CYP1A1-luciferase activity was independent of AhR activation, as determined by electrophoretic mobility shift analysis of TCDD-activated nuclear AhR. The specific PKC inhibitors did not significantly alter cytosolic or nuclear levels of AhR protein, whether alone or in combination with TCDD. These results suggested that PKC was not the sole factor responsible for regulation of CYP1A1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call