Abstract

It has been found that a short hydrophobic "template" peptide and a larger α-helical "adder" protein cooperatively self-assemble into micrometer sized amyloid fibers. Here, a common template of trypsin hydrolyzed gliadin is combined with six adder proteins (α-casein, α-lactalbumin, amylase, hemoglobin, insulin, and myoglobin) to determine what properties of the adder protein drive amyloid self-assembly. Utilizing Fourier Transform-Infrared (FT-IR) spectroscopy, the Amide I absorbance reveals that the observed decrease in α-helix with time is approximately equal to the increase in high strand density β-sheet, which is indicative of amyloid formation. The results show that the hydrophobic moment is a good predictor of conformation change but the fraction of aliphatic amino acids within the α-helices is a better predictor. Upon drying, the protein mixtures form large amyloid fibers. The fiber twist is dependent on the aliphatic index and molecular weight of the adder protein. Here we demonstrate that it is possible to predict the propensity of an adder protein to unfold into an amyloid structure and to predict the fiber morphology, both from adder protein molecular features, which can be applied to the pragmatic engineering of large amyloid fibers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.