Abstract

Engineered proteins with enhanced or altered functionality, generated for example by mutation or domain fusion, are at the core of nearly all synthetic biology endeavors in the context of precision medicine, also known as personalized medicine. From designer receptors sensing elevated blood markers to effectors rerouting signaling pathways to synthetic transcription factors and the customized therapeutics they regulate, engineered proteins play a crucial role at every step of novel therapeutic approaches using synthetic biology. Here, recent developments in protein engineering aided by advances in directed evolution, de novo design, and machine learning are discussed. Building on clinical successes already achieved with chimeric antigen receptor (CAR-) T cells and other cell-based therapies, these developments are expected to further enhance the capabilities of mammalian synthetic biology in biomedical and other applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.