Abstract

Chronic kidney disease (CKD) is currently defined as the presence of proteinuria and/or an eGFR < 60 mL/min/1.73m2 on the basis of the renal diagnosis. The global dimension of CKD is relevant, since its prevalence and incidence have doubled in the past three decades worldwide. A major complication that occurs in CKD patients is the development of cardiovascular (CV) disease, being the incidence rate of fatal/nonfatal CV events similar to the rate of ESKD in CKD. Moreover, CKD is a multifactorial disease where multiple mechanisms contribute to the individual prognosis. The correct development of novel biomarkers of CV risk may help clinicians to ameliorate the management of CKD patients. Biomarkers of CV risk in CKD patients are classifiable as prognostic, which help to improve CV risk prediction regardless of treatment, and predictive, which allow the selection of individuals who are likely to respond to a specific treatment. Several prognostic (cystatin C, cardiac troponins, markers of inflammation, and fibrosis) and predictive (genes, metalloproteinases, and complex classifiers) biomarkers have been developed. Despite previous biomarkers providing information on the pathophysiological mechanisms of CV risk in CKD beyond proteinuria and eGFR, only a minority have been adopted in clinical use. This mainly depends on heterogeneous results and lack of validation of biomarkers. The purpose of this review is to present an update on the already assessed biomarkers of CV risk in CKD and examine the strategies for a correct development of biomarkers in clinical practice. Development of both predictive and prognostic biomarkers is an important task for nephrologists. Predictive biomarkers are useful for designing novel clinical trials (enrichment design) and for better understanding of the variability in response to the current available treatments for CV risk. Prognostic biomarkers could help to improve risk stratification and anticipate diagnosis of CV disease, such as heart failure and coronary heart disease.

Highlights

  • IntroductionAccording to the latest classification, edited by the Kidney Disease: Improving Global Outcomes Work Group (KDIGO) in 2012, chronic kidney disease (CKD) is defined as the presence of a reduced kidney function (i.e., an estimated glomerular filtration rate ðeGFRÞ < 60 mL/min/1:73 m2) and/or albuminuria, a strong marker of kidney damage [1]

  • According to the latest classification, edited by the Kidney Disease: Improving Global Outcomes Work Group (KDIGO) in 2012, chronic kidney disease (CKD) is defined as the presence of a reduced kidney function and/or albuminuria, a strong marker of kidney damage [1]

  • The first consists in designing new clinical trials that allow to understand what patient is likely to respond to a specific treatment (ClinicalTrials.gov identifier: NCT03504566), whereas the second is focusing attention on the identification, validation, and implementation of novel CV risk biomarkers that may improve risk stratification of CKD patients and identify aspects of renal disease that are not detected by albuminuria or eGFR such as inflammation, tubular damage, and fibrosis

Read more

Summary

Introduction

According to the latest classification, edited by the Kidney Disease: Improving Global Outcomes Work Group (KDIGO) in 2012, chronic kidney disease (CKD) is defined as the presence of a reduced kidney function (i.e., an estimated glomerular filtration rate ðeGFRÞ < 60 mL/min/1:73 m2) and/or albuminuria, a strong marker of kidney damage [1]. The 2017 Global Burden of Disease study has shown that the number of deaths attributable to CKD increased by 33.7% over the 2007-2017 period and that this trend was higher than that of mortality due to neoplasms (+25.4%) and cardiovascular diseases (+21.1%) and close to that of diabetes mellitus (+34.7%) [3]. These general epidemiologic evidences are even more impressive when considering that from 1990 to 2016 the incidence and prevalence substantially doubled worldwide, rising by 88.76% and 86.95%, respectively [4]. The aim of this review is to summarize the strong association between CKD and CV disease and to examine the role of novel biomarkers of CV risk in CKD, dealing with biomarkers’ function, clinical application, and future perspectives

Cardiovascular Disease in CKD Patients
Rationale to Incorporate Novel Biomarkers of CV Risk in CKD Patients
Principally Investigated CV Biomarkers in CKD
Strategies for Implementing Novel Biomarkers of CV Risk in the CKD Setting
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call