Abstract

Probability-based inference in complex networks of interdependent variables is an active topic in statistical research, spurred by such diverse applications as forecasting, pedigree analysis, troubleshooting, and medical diagnosis. This paper concerns the role of Bayesian inference networks for updating student models in intelligent tutoring systems (ITSs). Basic concepts of the approach are briefly reviewed, but the emphasis is on the considerations that arise when one attempts to operationalize the abstract framework of probability-based reasoning in a practical ITS context. The discussion revolves around HYDRIVE, an ITS for learning to troubleshoot an aircraft hydraulics system. HYDRIVE supports generalized claims about aspects of student proficiency through probabilitybased combination of rule-based evaluations of specific actions. The paper highlights the interplay among inferential issues, the psychology of learning in the domain, and the instructional approach upon which the ITS is based.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.