Abstract

A mathematical model based on simple cake filtration theory was coupled to a reviously developed two-stage mathematical model for mercury (Hg) removal using powdered activated carbon injection upstream of a bag-house filter. Values of the average permeability of the filter cake and the filter resistance extracted from the model were 4.4× 10−13 m2 and 2.5 ×10−4 m−1, respectively. The flow is redistributed during partial cleaning of the filter, with flows higher across the newly cleaned filter section. The calculated average Hg removal efficiency from the baghouse is lower because of the high mass flux of Hg exiting the filter in the newly cleaned section. The model shows that calculated average Hg removal is affected by permeability, filter resistance, fraction of the baghouse cleaned, and cleaning interval.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.