Abstract
Are objects moving in depth searched for efficiently? Previous studies have reported conflicting results, with some finding efficient search for only approaching motion (Franconeri & Simons, 2003), and others reporting that both approaching and receding motion are found more efficiently than static targets (Skarratt, Cole, & Gellatly, 2009). This may be due to presentation protocol differences and a confounding variable. We systematically tested the effect of the motion-in-depth presentation method and the effect of a confounding unique depth singleton on search performance. Simulating motion in depth using size scaling, changing binocular disparity, or a calibrated combination of these two depth cues, we found that search performance was affected by presentation method and that a combination of size scaling and changing disparity gives rise to the most compelling motion-in-depth perception. Exploiting this finding in Experiment 2, we found that removing the depth singleton does not affect motion-in-depth search performance. Overall, we found that search is more efficient for targets moving in depth than static targets. Approaching and receding motion had an equal advantage over static targets in target selection, shown through shallower search slopes. However, approaching motion had lower intercepts, consistent with an advantage over receding motion in later stages of processing associated with target identification and response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.