Abstract
Structural and fabric analysis of the well-exposed Hilti mantle section, Oman ophiolite, suggests that shear zone development, which may have resulted from oceanic plate fragmentation, was influenced by pre-existing mantle fabric present at the paleo-ridge. Detailed structural mapping in the mantle section revealed a gently undulating structure with an east–west flow direction. A NW–SE strike-slip shear zone cuts across this horizontal structure. The crystal preferred orientation (CPO) of olivine within the foliation is dominated by (010) axial patterns rather than more commonly observed (010)[100] patterns, suggesting that the horizontal flow close to the Moho involved non-coaxial flow. Olivine CPO within the shear zone formed at low temperature is characterized by (001)[100] patterns and a sinistral sense of shear. The olivine CPO becomes weaker with progressive mylonitization and accompanying grain size reduction, and ultimately develops into an ultra-mylonite with a random CPO pattern. The olivine [010]-axis is consistently sub-vertical, even where the horizontal foliation has been rotated to a sub-vertical orientation within the shear zone. These observations suggest that the primary mechanical anisotropy (mantle fabric) has been readily transformed into a secondary structure (shear zone) with minimum modification. This occurred as a result of a change of the olivine slip systems during oceanic detachment and related tectonics during cooling. We propose that primary olivine CPO fabrics may play a significant role in the subsequent structural development of the mantle. Thus, the structural behavior of oceanic mantle lithosphere during subduction and obduction may be strongly influenced by initial mechanical anisotropy developed at an oceanic spreading center.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.