Abstract

This study investigates the movement behavior of particles of dissimilar morphology in the powder bed in Laser Powder Bed Fusion. Gas atomized (GA) and water atomized (WA) low alloy steel powders were employed to study their motion around the laser scan path. Particle velocities, entrainment distances and denudation zones were measured for both powders using high-speed imaging. The entrainment of GA powder particles in front of the laser beam towards the process area was initiated 1.6 mm from the edge of the melt pool, whereas the distance was 0.6–0.8 mm for the WA powder. The differences in observed behavior were related to the variations in particle shape of the two types of powder. The processing of WA powder resulted in a 16% narrower denudation zone (for a low volumetric energy density) compared to GA powder. However, the denudation width difference decreased with increasing volumetric energy density, most likely due to a steeper pressure gradient in the process area which diminishes the impact of powder shape. X-ray computed microtomography was utilized to estimate the drag force acting on the powder particles of various morphologies. The results showed that the radial drag force exerted on GA powder was 64% greater than when using WA powder. Moreover, if the WA powder particles were of elongated shape the drag force decreased by almost an order of magnitude, demonstrating the importance of the particle's morphology in the process dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.