Abstract

Multi-copper oxidases are capable of coupling the one-electron oxidation of four substrate equivalents to the four-electron reduction of dioxygen to two molecules of water. This process takes place at the trinuclear copper center of the enzymes. Previously, the main catalytic stages for three-domain (3D) laccases have been identified. However, for bacterial small two-domain (2D) laccases several questions remain to be answered. One of them is the nature of the protonation events upon the reductive cleavage of dioxygen to water. In 3D laccases, acidic residues play a key role in the protonation mechanisms. In this study, the role of the Arg240 residue, located within the T2 tunnel of 2D laccase from Streptomyces griseoflavus Ac-993, was investigated. X-ray structural analysis and kinetic characterization of two mutants, R240A and R240H, have provided support for a role of this residue in the protonation events. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call