Abstract

Surface coating on alloy anodes renders an effective remedy to tolerate internal stress and alleviate the side reaction with electrolytes for long-lasting reversible lithium redox reactions in lithium-ion batteries. However, the role of surface coating on the interparticle connections of alloy anodes remains not fully understood. Herein, we exploit real-time lithiation and mechanic measurement of SnO2 nanoparticles via in situ TEM with different coating layers, including conducting polymer polypyrrole and metal oxide MnO2. As a result, polypyrrole is more flexible to accommodate the volume expansion issue. More importantly, the polypyrrole coating layers offer a large contact area and strong adhesion force between the SnO2 nanoparticles, ensuring fast lithiation kinetics and high cycling stability. These observations provide new insight into how the interparticle connections of alloy anodes with diverse coating approaches can impact battery performance, shedding light on the practical processing of the alloy anode materials for high-energy Li-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.