Abstract

The somatomedins are potent stimulators of proliferation and differentiation of cultured myoblasts. In studies on the mechanism(s) of these actions, we have measured the activities of ornithine decarboxylase (ODC), an enzyme associated with rapid cell proliferation, and creatine kinase (CK), a biochemical marker for muscle differentiation, after treatment of L6 myoblast cultures with Multiplication Stimulating Activity (MSA), a member of the somatomedin family of insulinlike growth factors. ODC levels reached a peak 24 hours after MSA addition (before any detectable differentiation of the myoblasts) and then decreased as differentiation commenced and CK activity increased. Addition of alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC, caused a dramatic decrease in differentiation. Measurement of 3H-thymidine incorporation, DNA content, and cell number established that the effect of DFMO on differentiation was not a simple consequence of its antiproliferative actions. Cellular levels of putrescine and spermidine (but not spermine) decreased substantially following addition of DFMO to the cultures. The inhibitory effects of DFMO were abolished upon addition of exogenous polyamines to the medium. However, addition of polyamines in the absence of MSA or DFMO did not mimic the stimulation of differentiation by MSA. We conclude that polyamines play an essential role in the stimulation of L6 myoblast differentiation by somatomedins, but they are not sufficient to effect this stimulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.