Abstract

There is a growing interest in the nonfood usage of starch-based products. This interest is predominantly motivated by the ability to produce thermoplastic materials, known as thermoplastic starch (TPS), which can be manufactured using technology already developed for the production of synthetic plastics yet which are fully biodegradable. With the strength and flexibility of TPS materials being highly dependent upon the presence of nonaqueous plasticizing solvents, the nature of the interaction between starch and plasticizer is of obvious interest. As well as interest in the industrial applications of starch, the general nature of plasticization and structure formation within native starch granules is of fundamental interest. This paper presents results from a small and wide angle scattering and calorimetric investigation of model starch-plasticizer systems. Issues relevant to TPS production are addressed, and a model of lamellar assembly within starch granules facilitated by the plasticizing effect of low molecular weight solvents is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.