Abstract

Crack advance from short or long pre-cracks is predicted by the progressive failure of a cohesive zone in a strain gradient, elasto-plastic solid. The presence of strain gradients leads to the existence of an elastic zone at the tip of a stationary crack, for both the long crack and the short crack cases. This is in sharp contrast with previous asymptotic analyses of gradient solids, where elastic strains were neglected. The presence of an elastic singularity at the crack tip generates stresses which are sufficiently high to activate quasi-cleavage. For the long crack case, crack growth resistance curves are predicted for a wide range of ratios of cohesive zone strength to yield strength. Remarkably, this feature of an elastic singularity is preserved for short cracks, leading to a severe reduction in tensile ductility. In qualitative terms, these predictions resemble those of discrete dislocation calculations, including the concept of a dislocation-free zone at the crack tip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.