Abstract

The 50 kDa glycoprotein plasminogen activator inhibitor 1 (PAI-1) is the major physiological inhibitor of tissue-type and urokinase-type plasminogen activator. These two molecules convert inactive plasminogen into its fibrin-degrading form, plasmin. Plasma and tissue concentrations of PAI-1 are extremely low under normal circumstances but increase under pathologic conditions. This increase is mediated by many factors, including reactive oxygen species. Increased PAI-1 activity is associated with an increased risk of ischemic cardiovascular events and tissue fibrosis. Whereas the antifibrinolytic property of PAI-1 derives mainly from its inhibition of serine proteases, its profibrotic actions seem to derive from a capacity to stimulate interstitial macrophage recruitment and increase transcription of profibrotic genes, as well as from inhibition of serine proteases. Despite studies in mice that lack or overexpress PAI-1, the biological effects of this molecule in humans remain incompletely understood because of the complexity of the PAI-1-plasminogen-activator-plasmin system. The cardioprotective and renoprotective properties of some currently available drugs might be attributable in part to inhibition of PAI-1. The development of an orally active, high-affinity PAI-1 inhibitor will provide a potentially important pharmacological tool for further investigation of the role of PAI-1 and might offer a novel therapeutic strategy in renal and cardiovascular diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.