Abstract
The structure of eukaryotic cells is maintained by a network of filamentous actin anchored subjacently to the plasma membrane. This structure is referred to as the actin cortex. We present a locally constrained surface tension model for electroporation in order to address the influence of plasmalemmal-cortical anchoring on electropore dynamics. This model predicts that stable electropores are possible under certain conditions. The existence of stable electropores has been suggested in several experimental studies. The electropore radius at which stability is achieved is a function of the characteristic radii of locally constrained regions about the plasma membrane. This model opens the possibility of using actin-modifying compounds to physically manipulate cortical density, thereby manipulating electroporation dynamics. It also underscores the need to improve electroporation models further by incorporating the influence of trans-electropore ionic and aqueous flow, cortical flexibility, transmembrane protein mobility, and active cellular wound healing mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Dielectrics and Electrical Insulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.