Abstract
Aluminum is a widespread environmental neurotoxicant that can induce Alzheimer's disease (AD)-like damage, such as neuronal injury and impairment of learning and memory. Several studies have shown that aluminum could reduce the synaptic plasticity, but its molecular mechanism remains unclear. In this study, rats were treated with aluminum maltol (Al(mal)3) to establish a toxic animal model and PMA was used to interfere with the expression of PKC. The Morris water maze and open field test were used to investigate the behavioral changes of the rats. Western blotting and RT-PCR were used to detect the expression levels of NMDAR subunits, PKC and CaMKII. The results showed that Al(mal)3 damaged learning and memory function and reduced anxiety in rats. During this process, the expression of PKC was downregulated and it inhibited the expression of NMDARs through the phosphorylation of CaMKII.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.