Abstract

Disruption of autophagy plays an import role in neurodegenerative disorders, where deficient elimination of abnormal and toxic protein aggregates promotes cellular stress, failure and death. Therefore, induction of autophagy has been proposed as a reasonable strategy to help neurons clear abnormal protein aggregates and survive. The kinase mammalian target of rapamycin (mTOR) is a major regulator of the autophagic process and is regulated by starvation, growth factors, and cellular stressors. Upstream of mTOR the survival PI3K/AKT pathway modulates mTOR activity that is also altered in neurodegenerative diseases of Alzheimer and Parkinson. Nevertheless, the interplay between the PI3K/AKT/mTOR pathway and the autophagic process is complex and a more detailed examination of tissue from patients suffering neurodegenerative diseases and of animal and cellular models is needed. In the present work we review the recent findings on the role of the PI3K/AKT/mTOR pathway in the modulation of the autophagic process in neuronal protection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.