Abstract

Epidermal growth factor (EGF) rapidly increases jejunal glucose transport. Signal transduction mechanisms mediating EGF-induced alterations in jejunal glucose transport remain to be determined. New Zealand White rabbit (1 kg) jejunal tissue was stripped and mounted in short-circuited Ussing chambers. The transport of tritiated 3-O-methylglucose was measured in the presence of the PKC agonist 1,2-dioctanoyl-sn-glycerol (1,2-DOG) or the inactive analog 1,3-dioctanoyl-sn-glycerol (1,3-DOG). Additional experiments examined the effect of the PKC inhibitor chelerythrine, the PLC inhibitor U73122, the MAPK inhibitor PD 98059, the G-protein inhibitor GDP-betaS, the PI 3-kinase inhibitor LY294002, or the microtubule inhibitor colchicine on EGF-induced jejunal glucose transport. Net jejunal 3-O-methylglucose absorption was significantly increased following specific activation of PKC. A PKC antagonist inhibited the EGF-induced increase in net 3-O-methylglucose transport, while PI 3-kinase inhibition completely blocked the EGF-induced transport increase. Inhibition of PLC, MAPK, G-proteins, and microtubules had no effect on EGF-stimulated increases in jejunal transport. We conclude that the effect of EGF on jejunal glucose transport is mediated at least in part by PKC and PI 3-kinase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.