Abstract

Physics-based simulation provides an accelerated and safe avenue for developing, verifying, and testing robotic control algorithms and prototype designs. In the quest to leverage machine learning for developing AI-enabled robots, physics-based simulation can generate a wealth of labeled training data in a short amount of time. Physics-based simulation also creates an ideal proving ground for developing intelligent robots that can both learn from their mistakes and be verifiable. This article provides an overview of the use of simulation in robotics, emphasizing how robots (with sensing and actuation components), the environment they operate in, and the humans they interact with are simulated in practice. It concludes with an overview of existing tools for simulation in robotics and a short discussion of aspects that limit the role that simulation plays today in intelligent robot design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.