Abstract

Background: Medicinal plants play important roles in the management of several diseases including diabetes. Objective: The aim of this study is to investigate the mechanism of action of Physalis angulata (PA) for its anti-diabetic activity using an in vitro model. Materials and Methods: Alpha-amylase inhibition was investigated through dinitrosalicylic acid assay. Glucose uptake was determined using LO-2 cell model. Radical scavenging activity was performed through 1,1-diphenyl-2-picrylhydrazyl (DPPH), and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS+) assay. Nitric oxide (NO) production was measured using the Griess reaction. Cell viability was examined by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay. Results: The result showed that PA extract was able to inhibit enzyme alpha-amylase activity up to (56.6% ± 4.7%) at the concentration of 200 μg/ml. Moreover, PA possessed glucose adsorption and glucose uptake capacity up to (2.2 ± 0.18) mM glucose/g extract and (156% ± 10.1%), respectively. In addition, PA extract scavenged (52.6% ± 3.5%) DPPH and (59.7% ± 2.6%) ABTS + radicals and reduced NO production to (34.2% ± 3.8%) from RAW264.7 cells without any cytotoxic effects. Conclusion: PA could be suggested as pharmaceutical ingredient for the development of anti-diabetic products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call