Abstract

Most previous studies on Haematococcus pluvialis have been focused on growth and astaxanthin accumulation. However, the relationships between photorespiration and astaxanthin accumulation have not been clarified. The purpose of this study was to examine the role of photorespiration during the process of astaxanthin accumulation in H. pluvialis. During astaxanthin accumulation, the astaxanthin content was reduced significantly when photorespiration was inhibited by its specific inhibitor, carboxymethoxylamine. The inhibition of photorespiration did not change the dry weight, chlorophyll content and OJIP transients during the incubation; however, the inhibition of photorespiration significantly decreased the photochemistry of photosystem II and total photosynthetic O2 evolution capacity. Moreover, the restriction in photorespiration was synchronized with a decrease of astaxanthin accumulation. These results suggest that the photorespiratory pathway in H. pluvialis can accelerate astaxanthin accumulation. We speculate that photorespiration can enhance astaxanthin accumulation in the following ways: (i) photorespiration directly affects the glycerate-3-phosphate (PGA) level, which is intrinsically related to the accumulation of astaxanthin in H. pluvialis; (ii) the photorespiratory pathway indirectly affects the PGA level by effecting the dark reactions of photosynthesis, which then results in the enhancement of astaxanthin accumulation in H. pluvialis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call