Abstract

Sulphur dioxide inhibits noncyclic photophosphorylation in isolated envelope-free chloroplasts. This inhibition was shown to be reversible and competitive with phosphate, with an inhibitor constant of Ki=0.8mM. The same inhibition characteristics were observed when phosphoglycerate (PGA)- or ribulose-1,5-bisphosphate (RuBP)-dependent oxygen evolution was examined in a reconstituted chloroplast system in the presence of SO 3 (2-) . Using an ATP-regenerating system (phosphocreatine-creatine kinase), it was demonstrated that the inhibition of PGA-dependent oxygen evolution is solely the result of inhibited photophosphorylation. It is concluded that at low SO2 and SO 3 (2-) concentrations the inhibition of photophosphorylation is responsible for the inhibition of photosynthetic oxygen evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.