Abstract
For many organic pollutants present in surface waters, photolysis is considered as a major abiotic degradation process. The present study aimed to explore the role of photolysis in the environmental fate of hydroxychloroquine (HCQ) for the first time. The photolytic degradation of HCQ was investigated under simulated solar radiation (300–800 nm) in ultrapure, spring, river, and sea water. The effect of pH on the photodegradation rate was substantial and it was observed that degradation was faster at higher pH-values. Obtained half-lives ranged from 5.5 min at pH 9 to 23.1 h at pH 4. Humic acids, nitrate and iron(III) enhanced photodegradation of HCQ due to formation of hydroxyl radicals and its attack on HCQ molecule. In contrast, chloride, sulfate and bromide inhibited photodegradation. Additionally, the humic acids exhibited a dual role, photosensitization and inner filter effect. The study of the reaction kinetics was performed with HPLC-PDA, while the identification of degradation products formed during photolytic degradation was carried out using HPLC-MS/MS and NMR spectroscopy. The hydroxylation was recognized as the dominant path of photoproducts formation. The results of this research reveal the importance of photolytic degradation in environmental fate of HCQ and enable a better understanding of its behavior in the environment. Moreover, the results showing the significant effect of pH on the photodegradation of HCQ can be very useful in water treatment processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.