Abstract

AbstractPhosphorus (P) is an essential element for all life forms. It is a mineral nutrient. Orthophosphate is the only form of P that autotrophs can assimilate. Extracellular enzymes hydrolyze organic forms of P to phosphate. Eutrophication is the overenrichment of receiving waters with mineral nutrients. The results are excessive production of autotrophs, especially algae and cyanobacteria. This high productivity leads to high bacterial populations and high respiration rates, leading to hypoxia or anoxia in poorly mixed bottom waters and at night in surface waters during calm, warm conditions. Low dissolved oxygen causes the loss of aquatic animals and release of many materials normally bound to bottom sediments including various forms of P. This release of P reinforces the eutrophication. Excessive concentrations of P is the most common cause of eutrophication in freshwater lakes, reservoirs, streams, and headwaters of estuarine systems. In the ocean, N becomes the key mineral nutrient controlling primary production. Estuaries and continental shelf waters are a transition zone, where excessive P and N create problems. It is best to measure and regulate total P inputs to whole aquatic ecosystems, but for an easy assay it is best to measure total P concentrations, including paniculate P, in surface waters or N/P atomic ratios in phytoplankton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.