Abstract

Plant development and yield are severely hampered by climate change. Plants are very prone to a variety of abiotic stressors during growth, making them susceptible to destruction which can reduce the productivity by 20-60%. These stresses generate reactive oxygen species (ROS), which damage lipids, proteins, and nucleic acids. Microalgae and plant growth-promoting bacteria (PGPB) are remarkably effective at reducing the effects of salt stress and promoting plant growth, thereby increasing agricultural yield, and helping ensure global food security. Through a variety of mechanisms, including the production of phytohormones, 1-aminocyclopropane-1-carboxylic acid deaminase, exopolysaccharide, siderophores, hydrogen cyanide, extracellular polymeric substances, volatile organic compounds, and modulation of antioxidants defense machinery under abiotic stresses promote plant growth after inoculation of PGPB and microalgae. These microorganisms also maintain ion homeostasis, offer osmotic balance, stimulate genes that respond to salt and drought, rewire the metabolism, modify the transcription of ion transporter genes, and more. To counteract the negative consequences of salinity stress, this study summarizes the effects of PGPB- microalgae along with a tentative protective mechanism during salinity stress for sustainable agriculture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call