Abstract
To determine what alternative pathways may act as mechanisms of bypass resistance to type 1 insulin-like growth factor receptor (IGF-1R) blockade in rhabdomyosarcoma (RMS), we compared expression of receptor tyrosine kinase activity in a number of IGF-1R antibody-resistant and -sensitive RMS cell lines. We found that platelet-derived growth factor receptor β (PDGFR-β) activity was upregulated in three xenograft-derived IGF-1R antibody-resistant cell lines that arose from a highly sensitive fusion-positive RMS cell line (Rh41). Furthermore, we identified four additional fusion-negative RMS cell lines that similarly upregulated PDGFR-β activity when selected for IGF-1R antibody resistance in vitro. In the seven cell lines described, we observed enhanced growth inhibition when cells were treated with dual IGF-1R and PDGFR-β inhibition in vitro. In vivo studies have confirmed the enhanced effect of targeting IGF-1R and PDGFR-β in several mouse xenograft models of fusion-negative RMS. These findings suggest that PDGFR-β acts as a bypass resistance pathway to IGF-1R inhibition in a subset of RMS. Therapy co-targeting these receptors may be a promising new strategy in RMS care.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.