Abstract
Conventional (sedimentation) and advanced (dissolved air flotation) treatment were studied in the context of removal of the single cells form of the cyanobacteria Microcystis aeruginosa. This cyanobacterium species is recognised as an ideal surrogate for process removal efficiency assessment of particles of the problematic size range (3–10 m). The agglomeration (coagulation/flocculation) phase has been indicated as essential and determining the down-stream process efficiency, hence it is a prerequisite for process improvement. Relevant process parameters have been addressed on a laboratory (model water) and pilot plant (reservoir water) scale, including the influence of coagulant (FeCl3) dose, coagulation pH, flocculation time, energy input (G value), single stage versus tapered flocculation and application of cationic polymer as coagulant aid. The process efficiency was assessed as a function of the preceeding agglomeration (coagulation/flocculation) phase and the obtained particle (floc) size distributions. The particle (floc) size - density relationship was addressed in the context of more accurate process kinetic modelling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.