Abstract

Oral malodor is caused by volatile sulfur compounds (VSCs) composed mainly of hydrogen sulfide (H2S) and methyl mercaptan. In particular, H2S is an important compound, since it is a major component of physiologic halitosis. The toxicity of VSCs is similar to that of hydrogen cyanide, and is well investigated. The role of VSCs in reducing collagen in human gingival fibroblasts is one of the main sources of their toxicity to human oral tissues. It has been reported recently that H2S may cause apoptosis in several periodontal tissues. In human gingival fibroblasts, H2S inhibits not only cytochrome c oxidase activity but also superoxide dismutase activity. The levels of reactive oxygen species are markedly increased, which causes the release of cytochrome c into the cytoplasm, resulting in caspase-9 activation; finally, the executor caspase, caspase-3, is activated. This pathway is commonly observed in cells from all periodontal tissues. Moreover, p53, an apoptotic factor, and phosphorlylated p53, which is the activated form, are increased by H2S in keratinocyte stem cells and osteoblasts. H2S also increases the expression of Bax, a primary response gene playing an important role in p53-mediated apoptosis, but maintains a lower expression of Bcl-2, an anti-apoptotic factor, in osteoblasts. It is concluded that the Bax apoptotic pathway and the mitochondrial pathway are activated by H2S.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.