Abstract

An approach merging crystal chemistry and density functional theory (DFT) electron localization function (ELF) taking P 3s2 lone pair (E) into account induces a full renewal of stereochemistry of black phosphorus, its crystal network evolutions and phase transitions under increasing pressures from atmospheric up to 32 GPa. Orthorhombic (Cmce) black P at ambient pressure, shows a packing of puckered [P]n layers - orthogonal to [010] - separated by a large free interspace (3.071 Å), which actually is partially filled by lone pairs (E) (P-E ~ 0.8 Å). Each P exhibits its lone pair pointing outside the [P]n layer, sandwiching it between two [E]n layers into a new stacking sequence … [EP2E]n … denoted O-[PE]n. The free interspace between [EP2E]n layers is much smaller 1.858 Å but allows sliding along [001]. The pressure evolving up to 2.66 GPa, all structural details have been followed and reported, including the layer thickness reduction along [010] and the sliding along [001] of consecutive layers.A mechanism for the phase transition occurring around 5.5 GPa is proposed. Depicted in the trigonal system the new layered phase R-[PE]n involves a bond rearrangement through E-E layer in zigzag phosphorus layers and P-E rotation and alignment with the A3¯ axis. Now, the phosphorene layers have P-E patterns oriented towards each other in their interspace.A very particular phenomenon occurs around ~11 GPa the lone pair centroid Ec (P-Ec = 0.73 Å) splits into three partially occupied sites Ed around the A3¯ axis which explains observed variations in properties at this critical pressure. So, we claim that there are two trigonal phases, R1-[PE] up to 11 GPa followed by a second form R2-[PE] directly caused by lone pair displacement from Ec to Ed and its influence on layer stacking.A further layer sliding brings the phosphorus atomic layers close enough to each other to establish new P-P bonds and then to cause an ultimate transition to cubic system, with a new structure, isostructural to Po. The mechanisms of the transitions are detailed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.