Abstract

We explore the role of oxygen vacancies in the oxygen evolution reaction (OER) for double perovskite PrBaCo2O6-δ. Interestingly, we find that largely increasing oxygen vacancies leads to a significant reduction in the intrinsic OER activity. Structural studies reveal that oxygen vacancies tend to orderly align in PrO1-δ. This ordered structure not only lowers the cobalt oxidation states but also triggers a spin-state transition from high-spin to low-spin states for cobalt ions, both greatly slowing the OER kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.