Abstract
The phase stability, crystal structure, and magnetic properties of perovskite-like nonstoichiometric Sr(2)CoIrO(6-δ) were studied. Oxygen deficiency can be well controlled and reversibly varied up to δ = 0.33. A single phase exists at least for partial oxygen pressures between 10(-5) and 1 bar at 1273 K, followed by phase decomposition at higher temperature with the elimination of metallic Ir and the formation of a new phase with approximately Sr(3)CoIrO(6) composition crystallizing in K(4)CdCl(6) structure type. The structural features of Sr(2)CoIrO(6-δ) are dependent on both temperature and oxygen content and were determined by synchrotron and neutron powder diffraction. Both the increasing amount of oxygen vacancies at constant temperature and increasing temperature at constant oxygen content result in the same higher crystal symmetry of Sr(2)CoIrO(6-δ): (1) The oxygen-stoichiometric phase Sr(2)CoIrO(6.00) is monoclinic (I2/m or P2(1)/n) at room temperature but cubic (Fm-3m) for Sr(2)CoIrO(5.67). (2) A sequence of phase transitions [Formula: see text] was observed for Sr(2)CoIrO(6.00) in air. All Sr(2)CoIrO(6-δ) compositions show weak ferromagnetism at low temperature with a canted but predominantly antiferromagnetic ground state. The magnetic ordering temperature decreases monotonously with increasing oxygen deficiency, while pronounced extrema are observed for the paramagnetic moment and the Curie-Weiss temperature at an oxygen deficiency δ ≈ 0.10, which corresponds to the P2(1)/n ↔ I2/m phase transformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.