Abstract

Exposure to visible-light causes the photoinactivation of certain bacteria by a process that is believed to involve the photo-stimulation of endogenous intracellular porphyrins. Studies with some bacterial species have reported that this process is oxygen-dependent. This study examines the role of oxygen in the visible-light inactivation of Staphylococcus aureus. Suspensions of S. aureus were exposed to broadband visible-light under both oxygen depletion and oxygen enhancement conditions to determine whether these environmental modifications had any effect on the staphylococcal inactivation rate. Oxygen enhancement was achieved by flowing oxygen over the surface of the bacterial sample during light inactivation and results demonstrated an increased rate of staphylococcal inactivation, with approximately 3.5 times less specific dose being required for inactivation compared to that for a non-enhanced control. Oxygen depletion, achieved through the addition of oxygen scavengers to the S. aureus suspension, further demonstrated the essential role of oxygen in the light inactivation process, with significantly reduced staphylococcal inactivation being observed in the presence of oxygen scavengers. The results of the present study demonstrate that the presence of oxygen is important for the visible-light inactivation of S. aureus, thus providing supporting evidence that the nature of the mechanism occurring within the visible-light-exposed staphylococci is photodynamic inactivation through the photo-excitation of intracellular porphyrins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.