Abstract

The involvement of the antioxidant enzymes catalase and glutathione peroxidase (both at 0.1 mg/ml) in defence against the genotoxicity of phosphamidon (80 microg/ml) and dieldrin (25 microM) was investigated in order to demonstrate that the two pesticides damage DNA through the generation of reactive oxygen species and therefore of oxidative stress. The pesticide genotoxicity was determined by the cytokinesis-block micronucleus test performed on primary mouse lung fibroblast cultures. Also, 3-aminotriazole (40 mM) and mercaptosuccinate (0.5 mM), inhibitors of catalase and glutathione peroxidase, respectively, were added to the cultures. Data indicate that catalase causes a decrease only in the damage induced by phosphamidon, while glutathione peroxidase protects against damage induced by both phosphamidon and dieldrin. Simultaneous treatment with antioxidant inhibitors and pesticides results in a decrease in micronucleus frequency and cell number, due to apoptotic death. Our results indicate that clastogenic DNA damage produced by the two pesticides is modulated by antioxidant enzymes and their inhibitors and thus could be due to oxidative stress induction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.