Abstract

Reactive oxygen species (ROS) play a key role in the pathogenesis of atherosclerosis. The main mechanisms which are involved are low-density lipoprotein oxidative modification, inactivation of nitric oxide and modulation of redox-sensitive signaling pathways. ROS contribute to several aspects of atherosclerosis including endothelial cell dysfunction, monocyte/macrophage recruitment and activation, stimulation of inflammation, and inducing smooth muscle cell migration and proliferation. NADPH oxidase is the main source of ROS in the vasculature. This enzyme consists of a membrane-bound heterodimer of gp91phox and p22phox, cytosolic regulatory subunits p47phox, p67phox and p40phox, and small GTP-binding proteins rac1 and rac 2. Seven distinct isoforms of this enzyme have been identified, of which four (NOX1, 2, 4 and 5) may have cardiovascular function. In this paper, we review the current state of knowledge concerning the role of oxidative stress and NOX enzymes in pathogenesis of atherosclerosis. Moreover, we analyze the experimental studies that explore the relationship between the NOX family and atherosclerosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.