Abstract

Overwash is a major controlling factor in the morphology of the mixing zone of coastal aquifers. Conceptual models of the mixing zone describe an interface controlled by tidal oscillations, wave run-up, and other factors; however, few describe the influence of large storm events. In August 1993, Hatteras Island, North Carolina, USA, experienced a 3-m storm surge due to Hurricane Emily. Sound-side flooding infiltrated a wellfield, causing a dramatic increase in TDS levels that persisted for more than 3 years. Two-dimensional simulations with SUTRA, the USGS finite-element model, are calibrated to the TDS breakthrough data of this storm to infer model dispersivity values. Simulations using the calibrated dispersivity values, predicted flooding levels, and 54 years of hurricane records to determine the influence of the overwash events suggest that it is rare for the mixing zone to approximate the conceptual morphology. Even during quiescent periods such as between 1965 and 1975, TDS levels do not return to theoretical levels before being elevated by a subsequent storm event. Thus, while tidal oscillations and other factors are important to mixing zone development, basic wind events and more severe storm events may have more influence and lasting effect on the morphology of the mixing zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.