Abstract
Variations in systemic properties of the arterial tree, such as aging-induced vessel stiffness, can alter the shape of pressure and flow waveforms. As a consequence, the hemodynamics around a cerebral aneurysm change, and therefore, also the corresponding in- and outlet boundary conditions (BCs) used for three-dimensional (3D) calculations of hemodynamic indices. In this study, we investigate the effects of variations in systemic properties on wall shear stress (WSS) indices of a cerebral aneurysm. We created a virtual patient database by varying systemic properties within physiological ranges. BCs for 3D-CFD simulations were derived using a pulse wave propagation model for each realization of the virtual database. WSS indices were derived from the 3D simulations and their variabilities quantified. Variations in BCs, caused by changes in systemic properties, yielded variabilities in the WSS indices that were of the same order of magnitude as differences in these WSS indices between ruptured and unruptured aneurysms. Sensitivity analysis showed that the systemic properties impacted both in- and outlet BCs simultaneously and altered the WSS indices. We conclude that the influence of variations in patient-specific systemic properties on WSS indices should be evaluated when using WSS indices in multidisciplinary rupture prediction models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.