Abstract

The Lassa virus nucleoprotein (NP) is a multifunctional protein that plays an essential role in many aspects of the viral life cycle, including RNA encapsidation, viral transcription and replication, recruitment of ribonucleoprotein complexes to viral budding sites, and inhibition of the host cell interferon response. While it is known that NP is capable of forming oligomers, both the oligomeric state of NP in mammalian cells and the significance of NP oligomerization for its various functions remain unclear. Here, we demonstrate that Lassa virus NP solely forms trimers upon expression in mammalian cells. Using a minigenome assay we show that mutants that are not able to form stable trimers are no longer functional during transcription and/or replication of the minigenome, indicating that NP trimerization is essential for transcription and/or replication of the viral genome. However, mutations leading to destabilization of the NP trimer did not impact the incorporation of NP into virus-like particles or its ability to suppress interferon-induced gene expression, two important functions of arenavirus NP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.