Abstract

We characterize a method of heat-assisted magnetic probe recording on perpendicular media. Heating source is field emission current from a scanning tunneling microscope (STM) tip. Recording media are three kinds of magnetic films, Co/Pt, CoNi/Pt, and Co/Pd multilayers with different nucleation fields. Pulses with amplitude of 5 V were applied between the STM tip and the recording medium. Experiments show that magnetic marks with an average size of 180 nm were formed on both Co/Pt and CoNi/Pt films whose nucleation fields are greater than their saturation magnetization. No marks were observed on the Co/Pd film whose nucleation field is smaller than its saturation magnetization. A model is built to simulate the dynamic process of domain formation in probe-based magnetic recording system. Simulation results agree with experiments and it explains the effect of the nucleation field of medium in perpendicular recording.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.