Abstract

Merkel cells originate from the neural crest. They are located in hairy and glabrous skin and have neuroendocrine characteristics. Together with A beta afferents, Merkel cells form a slowly adapting mechanoreceptor, the Merkel nerve ending, which transduces steady skin indentation. Neurotphin-3 (NT-3) plays important roles in neural crest cell development. We thus sought to determine whether neurotrophin signaling is essential for Merkel cell development in the whisker pad of the mouse. Our data indicate that at embryonic day 16.5 (E 16.5), NT-3 and its receptors, p75 neurotrophin receptor (p75NTR) and tyrosine kinase receptor, TrkC are not expressed at detectable levels in Merkel cells. After a perinatal switch, however, Merkel cells in whiskers of newborn mice are immunoreactive for p75NTR, TrkC and NT-3. Immunoreactivity of all three markers persists into adulthood. By contrast, innervating fibers are intensely p75NTR-immunoreactive in E16.5 whiskers, but no TrkC immunoreactivity is detected. At birth, and at 6 weeks of age, afferent fibers are intensely immunoreactive for both p75NTR and TrkC. In TrkC null whiskers, numerous Merkel cells are present at E16.5, and they are innervated. We draw three major conclusions from these observations: (i) NT-3 signaling through p75NTR or TrkC is not required for the development and prenatal survival of either a major subset or of all Merkel cells, (ii) the postnatal survival of Merkel cells is supported by autocrine or paracrine NT-3, rather than by neuron-derived NT-3, and (iii) Merkel cell-derived NT-3 is not a chemoattractant for innervating A beta fibers, but is likely to be involved in maintaining Merkel cell innervation postnatally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call