Abstract

In this paper, we consider a quantum mechanical system to model the effect of quantum fields on the evolution of the early universe. The system consists of an inverted oscillator bilinearly coupled to a set of harmonic oscillators. We point out that the role of noise may be crucial in the dynamics of the oscillator, which is analyzed using the theory of harmonic oscillators with random frequency. Using this analogy, we argue that due to the fluctuations around its mean value, a positive vacuum energy density would not produce an exponentially expanding but an oscillating universe, in the same fashion that an inverted pendulum is stabilized by random oscillations of the suspension point (stochastic Kapitza pendulum). The results emphasize the relevance of noise in the evolution of the scale factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.