Abstract

Hydroxyurea (HU) has been shown to induce fetal hemoglobin (HbF) synthesis through activation of the soluble guanosine cyclase/cyclic guanosine monophosphate signaling pathway. The release of NO from HU by heme iron is thought to be involved in this mechanism of HbF induction. Studies completed in sickle cell patients confirmed increased serum NO levels after oral HU therapy but NO generation in red blood cells and the effect on γ-gene transcription have not been extensively investigated. Therefore, we performed studies to quantify NO generated by HU in K562 cells and normal erythroid progenitors as a mechanism for γ-globin activation. NO levels were measured after drug treatments using the Nitric Oxide Assay Kit (Calbiochem) and γ-globin mRNA was measured using quantitative PCR. HU (100μM) increased NO 1.4 to 1.8-fold at 24–72 hrs in K562 cells compared to a 2.0 to 2.5-fold increase in NO produced by the known NO donor, deta-nonoate (DE; 400μM). NO levels were also measured in erythroid progenitors grown in liquid cultures; a 1.6-fold increase in NO was produced by 30μM HU after 48 hrs with comparable increases produced by 200μM DE. To understand the effects of HU on normal NO synthesis from L-arginine through the action of NO synthase (NOS), we performed studies with the NOS inhibitor, NG-Monomethyl-L-arginine (L-NMMA). Interestingly, HU increased NO levels 2.5-fold at 24 hrs when combined L-NMMA compared a 1.4-fold increase produced by HU alone; this pattern persisted up to 72 hrs. Parallel with these findings γ-globin activation by HU was augmented approximately 25% by L-NMMA; DE combined with L-NMMA did not produce the same effect. These data suggest a novel mechanism for NOS regulation by HU compared to DE. Subsequent studies were completed to determine if HbF synthesis could be augmented by combining NO donors since they have different mechanisms of action. HbF levels in K562 cells were measured by ELISA (Bethyl Laboratories) and normalized by total hemoglobin and protein. Treatment with HU or DE increased HbF 3.6-fold and 4.6-fold respectively; when HU was combined with DE an additive 7.6-fold increase in HbF was produced. These data confirm that HU treatment lead to NO generation in K562 cells and normal erythroid progenitors which plays a role in its mechanism of γ-globin activation. HU combined with DE had an additive effect on HbF synthesis. These findings are relevant to current research efforts to develop novel HbF inducers for therapy in sickle cell patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call