Abstract
The active catalysts for methane formation from the gas mixture of CO2 + 4H2 with almost 100% methane selectivity were prepared by reduction of the oxide mixture of NiO and ZrO2 prepared by calcination of aqueous ZrO2 sol with Sm(NO3)3 and Ni(NO3)2. The 50 at%Ni-50 at%(Zr-Sm oxide) catalyst consisting of 50 at%Ni-50 at%(Zr + Sm) with Zr/Sm = 5 calcined at 650 or 800 °C showed the highest activity for methanation. The active catalysts were Ni supported on tetragonal ZrO2, and the activity for methanation increased by an increase in inclusion of Sm3+ ions substituting Zr4+ ions in the tetragonal ZrO2 lattice as a result of an increase in calcination temperature. However, the increase in calcination temperature decreased BET surface area, metal dispersion and hydrogen uptake due to grain growth. Thus, the optimum calcination temperature existed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.