Abstract

To explore the role of Ni(2+)-sensitive T-type Ca(2+) channels in the generation of spontaneous excitation of detrusor smooth muscles. In isolated detrusor smooth muscle bundles of the guinea-pig bladder, changes in the membrane potential and muscle tension were measured using intracellular microelectrodes and isometric tension recording. Changes in the intracellular Ca(2+) concentration were recorded from bundles loaded with the fluorescent dye fura-PE3. Detrusor smooth muscles had two types of spontaneous electrical activity, i.e. individual and bursting action potentials. Ni(2+) (30 microM), a blocker for T-type Ca(2+) channels, reduced the frequency of individual action potentials without changing their amplitude. Higher concentrations of Ni(2+) (100-300 microM) converted individual action potentials into the bursts, as did apamin (0.1 microM), a blocker of small-conductance Ca(2+)-activated K(+) channels (SK). They also increased the amplitudes of spontaneous Ca(2+) transients and corresponding contractions whilst reducing their frequencies. In preparations which generated bursting action potentials, nifedipine (1 microm) converted action potentials into spontaneous transient depolarizations (STDs), and subsequent applications of Ni(2+) (100 microm) abolished STDs. Gadolinium (100 microM) and SKF96365 (10 microM), blockers for nonselective cation channels, and niflumic acid (100 microm), a blocker for Ca(2+)-activated Cl- channels, had no effect on either the amplitude or frequency of spontaneous action potentials. The T-type Ca(2+) channel may have dual roles in generating spontaneous excitation in detrusor smooth muscles. First, activity of these channels may account for the preceding depolarizations that lead to action potentials. Second, Ca(2+) influx through T-type Ca(2+) channels may couple functionally to SK channels, contributing to the stability of the resting membrane potential in detrusor smooth muscle. Thus, pharmacological manipulation of T-type Ca(2+) channels in detrusor smooth muscles could be of potential value for treating the overactive bladder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.