Abstract
In recent years, traditional β-lactams have dramatically reduced their effectiveness against gram-negative bacteria mainly because of their ability to express multiple β-lactamase or carabapenemases that are not hydrolyzed by the old β-lactam inhibitors (BLIs) such as clavulanic acid, tazobactam, and sulbactam. New BLIs molecules have been developed to face the need of compounds that are active against multidrug or pandrug resistant gram-negative pathogens. The aim of this review is to summarize the new generation of BLIs and β-lactams combinations. A number of new molecules with activity against Ambler class A (e.g., extended-spectrum β-lactamases, serine carbapenemases), class C (e.g., AmpC), or class D (e.g., oxacillinase-48) have been recently approved in combination with old β-lactams for the treatment of multidrug-resistant bacteria, and other agents are under investigation. These new compounds include diazabicyclooctanones non-β-lactam inhibitors (e.g., avibactam, relebactam, nacubactam) and boronic acid inhibitors (e.g., vaborbactam). Newly approved and investigational new BLIs are expected to offer many advantages for the management of patients with multidrug-resistant gram-negative pathogens. Promising characteristics of new compounds include high activity against multi drug resistance gram-negative bacteria and a favorable safety profile.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.