Abstract

Studies assessing relationships between neural and cognitive changes in healthy aging have shown that a variety of aspects of brain structure and function explain a significant portion of the variability in cognitive outcomes throughout adulthood. Many studies assessing relationships between brain function and cognition have utilized time-averaged, or static functional connectivity methods to explore ways in which brain network organization may contribute to aspects of cognitive aging. However, recent studies in this field have suggested that time-varying, or dynamic measures of functional connectivity, which assess changes in functional connectivity over the course of a scan session, may play a stronger role in explaining cognitive outcomes in healthy young adults. Further, both static and dynamic functional connectivity studies suggest that there may be differences in patterns of brain-cognition relationships as a function of whether or not the participant is performing a task during the scan. Thus, the goals of the present study were threefold: (1) assess whether neural flexibility during both resting as well as task-based scans is related to participant age and cognitive performance in a lifespan aging sample, (2) determine whether neural flexibility moderates relationships between age and cognitive performance, and (3) explore differences in neural flexibility between rest and task. Participants in the study were 386 healthy adults between the ages of 20–80 who provided resting state and/or task-based (Matrix Reasoning) functional magnetic resonance imaging (fMRI) scan data as part of their participation in two ongoing studies of cognitive aging. Neural flexibility measures from both resting and task-based scans reflected the number of times each node changed network assignment, and were averaged both across the whole brain (global neural flexibility) as well as within ten somatosensory/cognitive networks. Results showed that neural flexibility was not related to participant age, and that task-based global neural flexibility, as well as task-based neural flexibility in several networks, tended to be negatively related to reaction times during the Matrix Reasoning task, however these effects did not survive strict multiple comparisons correction. Resting state neural flexibility was not significantly related to either participant age or cognitive performance. Additionally, no neural flexibility measures significantly moderated relationships between participant age and cognitive outcomes. Further, neural flexibility differed as a function of scan type, with resting state neural flexibility being significantly greater than task-based neural flexibility. Thus, neural flexibility measures computed during a cognitive task may be more meaningfully related to cognitive performance across the adult lifespan then resting state measures of neural flexibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.