Abstract

In this work, we investigated the role of the nebulizer gas flow in electrosonic spray ionization (ESSI), by systematically studying the relation between the flow and the ion signals of proteins, such as cytochrome c and holomyoglobin using ESSI-mass spectrometry (MS). When a neutral solution was delivered with a small sample flow rate (≤5μL/min), no obvious transition from electrospray ionization (ESI) to ESSI was found as the gas velocity varies from subsonic to supersonic speed. Droplets mostly experienced acceleration instead of breakup by the high-speed nebulizer gas. On the contrary, using particular experimental conditions, such as an acidic solution or high sample flow rate (≥200μL/min), more folded protein ions appear to be kept in droplets of diminishing size due to breakup by the high-speed nebulizer gas in ESSI compared with ESI. Theoretical analyses and numerical simulations were also performed to explain the observed phenomena. These systematic studies clarify the ionization mechanism of ESSI and provide valuable insight for optimizing ESSI and other popular pneumatically assisted electrospray ionization methods for future applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call